积化和差 | 和差化积⚓︎
约 380 个字 预计阅读时间 1 分钟
- 积化和差公式是初等数学三角函数部分的一组恒等式,积化和差公式==将两个三角函数值的积化为另两个三角函数值的和的常数倍,达到降次的作用== 。
推导过程⚓︎
- 已知如下公式:
\(\cos (\alpha + \beta) = \cos\alpha \cos \beta - \sin \alpha \sin \beta \hspace{3cm} (1)\)
\(\cos (\alpha - \beta) = \cos\alpha \cos \beta + \sin \alpha \sin \beta\hspace{3cm} (2)\)
\(\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \hspace{3cm} (3)\)
\(\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \hspace{3cm} (4)\)
- 通过 \([ (1) + (2) ] / 2\) 可以得出 \(\cos \alpha \cos \beta\)
- 通过 \([ (2) - (1) ] / 2\) 可以得出 \(\sin \alpha \sin \beta\)
- 通过 \([ (3) + (4) ] / 2\) 可以得出 \(\sin \alpha \cos \beta\)
-
通过 \([ (3) - (4) ] / 2\) 可以得出 \(\cos \alpha \sin \beta\)
-
所以可以得出:
\(\sin \alpha \sin \beta = \dfrac{1}{2} [ \cos (\alpha - \beta ) - \cos(\alpha + \beta) ] \hspace{3cm} (5)\)
\(\cos \alpha \cos \beta = \dfrac{1}{2} [ \cos (\alpha + \beta ) + \cos(\alpha - \beta) ] \hspace{3cm} (6)\)
\(\sin \alpha \cos \beta = \dfrac{1}{2} [ \sin (\alpha + \beta ) + \sin(\alpha - \beta) ] \hspace{3cm} (7)\)
\(\cos \alpha \sin \beta = \dfrac{1}{2} [ \sin (\alpha + \beta ) - \sin(\alpha - \beta) ] \hspace{3cm} (8)\)
- 对于(5)式,可将\(\alpha - \beta\) 视作 \(A\),\(\alpha + \beta\) 视作 \(B\)。用\(A\)和\(B\)表示并反解出 \(\alpha, \beta\)。
- 同理,对于剩下的三个式子同样可以利用此方法得出结论。
\(\cos \alpha - \cos \beta = - 2 \sin (\dfrac{\alpha +\beta }{2}) \sin (\dfrac{\alpha - \beta}{2})\)
\(\cos \alpha + \cos \beta = 2 \cos (\dfrac{\alpha +\beta }{2}) \cos (\dfrac{\alpha - \beta}{2})\)
\(\sin \alpha - \sin \beta = 2 \cos (\dfrac{\alpha +\beta }{2}) \sin (\dfrac{\alpha - \beta}{2})\)
\(\sin \alpha + \sin \beta = 2 \sin (\dfrac{\alpha +\beta }{2}) \cos (\dfrac{\alpha - \beta}{2})\)
- 上面四个就是“和差化积”