LaTeX|1-零零碎碎
约 745 个字 151 行代码 预计阅读时间 4 分钟
向量篇 | 矩阵篇 | 行列式篇 :⚓︎
\(\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4\end{pmatrix}\)
\[ \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \]
\[ \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} \]
\[ \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \]
\[\def\arraystretch{2} \begin{array}{|c|c|c|c|c|} \hline \hline \text{原型} & 符号 & \text{var} + 原型 & 首字母大写 & \text{var} + 首字母大写 \cr \hline \text{alpha} &\alpha & & \Alpha & A \cr \hline \text{beta} & \beta & & \Beta & B \cr \hline \text{gamma} & \gamma & & \Gamma & \varGamma \cr \hline \text{delta} & \delta & & \Delta & \varDelta \cr \hline \text{epsilon} & \epsilon & \varepsilon & \Epsilon & E \cr \hline \text{zeta} & \zeta & & \Zeta & Z \cr \hline \text{eta} & \eta & & \Eta & E \cr \hline \text{theta} & \theta & \vartheta & \Theta & \varTheta \cr \hline \text{iota} & \iota & & \Iota & I \cr \hline \text{kappa} & \kappa & \varkappa & \Kappa & K \cr \hline \text{lambda} & \lambda & & \Lambda & \varLambda \cr \hline \text{mu} & \mu & & \Mu & M \cr \hline \text{nu} & \nu & & \Nu & N \cr \hline \text{xi} & \xi & & \Xi & \varXi \cr \hline \text{原型} & 符号 & \text{var} + 原型 & 首字母大写 & \text{var} + 首字母大写 \cr \hline \text{omicron} & \omicron & & \Omicron & O \cr \hline \text{pi} & \pi & \varpi & \Pi & \varPi \cr \hline \text{rho} & \rho & \varrho & \Rho & P \cr \hline \text{sigma} & \sigma & \varsigma & \Sigma & \varSigma \cr \hline \text{tau} & \tau & & \Tau & T \cr \hline \text{upsilon} & \upsilon & & \Upsilon & \varUpsilon \cr \hline \text{phi} & \phi & \varphi & \Phi& \varPhi \cr \hline \text{chi} & \chi & & \Chi & X \cr \hline \text{psi} & \psi & & \Psi & \varPsi \cr \hline \text{omega} & \omega & & \Omega & \varOmega \cr \hline \hline \end{array}\]
奇异字母与英文字体⚓︎
\mathbb{ }⚓︎
- Black Board Bold 一般用于表示数学和物理学中的向量或集合的符号
\(\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathbb{abcdefghijklmnopqrstuvwxyz}\) \(\mathbb{1234}\)
\mathbf{ }⚓︎
- 正粗体
\(\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathbf{abcdefghijklmnopqrstuvwxyz}\) \(\mathbf{1234567890}\)
\mathit{ }⚓︎
- 斜体数字
\(\mathit{1234567890 ABCDE abcdef}\)
\mathcal{ }⚓︎
- 书法字体(仅限大写),用于方案识别,密码学概念;
\mathscr{ }⚓︎
- 花体字
\(\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathscr{ 1234567890}\)
\mathfrak{ }⚓︎
- 哥特式字体
\(\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)
\(\mathfrak{1234567890}\)
\(\mathfrak{abcdefghijklmnopqrstuvwxyz}\)
$\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
$\mathfrak{1234567890}$
$\mathfrak{abcdefghijklmnopqrstuvwxyz}$
\mathtt{ }⚓︎
- 等宽字体
\(\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathtt{abcdefghijklmnopqrstuvwxyz}\)
杂七杂八⚓︎
\[\mathop{\arg\min}\limits_{\theta} \hspace{8pt} \mathop{\min}\limits_{\theta}\]
\[s.t \hspace{4pt} \left\{ \begin{aligned} \sum \limits^{n}_{j=1} x_{ij} \leq a_i , i = 1,2,..,m \\ \sum \limits^{n}_{i=1} x_{ij} = b_j , j = 1,2,..,n \end{aligned} \right. \]
\[\sim \hspace{10pt} \tilde{A} \hspace{10pt} \forall\]
\[\Re \hspace{4pt} \real \hspace{4pt} \reals \hspace{4pt} \Reals \hspace{4pt} \Z\]
$$\text{价格} \hspace{90pt} \text{容积} \hspace{90pt} \text{美观} \hspace{50cm} \\[2ex] B_{1}^{(3)} = \begin{pmatrix}
1 & 1/5 & 1/8 \\
5 & 1 & 1/4 \\
8 & 4 & 1
\end{pmatrix} \hspace{5pt}
B_{5}^{(3)} = \begin{pmatrix}
1 & 6 & 4 \\
1/6 & 1 & 1/3 \\
1/4 & 3 & 1
\end{pmatrix} \hspace{5pt}
B_{9}^{(3)} = \begin{pmatrix}
1 & 1/7 & 3 \\
7 & 1 & 9 \\
1/3 & 1/9 & 1
\end{pmatrix} \hspace{20cm}$$
$$\text{冷冻} \hspace{90pt} \text{功率} \hspace{90pt} \text{体积} \hspace{50cm}\\[2ex] B_{2}^{(3)} = \begin{pmatrix}
1 & 2 & 9 \\
1/2 & 1 & 7 \\
1/9 & 1/7 & 1
\end{pmatrix} \hspace{5pt}
B_{6}^{(3)} = \begin{pmatrix}
1 & 1/8 & 1/4 \\
8 & 1 & 5 \\
4 & 1/5 & 1
\end{pmatrix}\hspace{5pt}
B_{10}^{(3)} = \begin{pmatrix}
1 & 1/7 & 1/2 \\
7 & 1 & 4 \\
2 & 1/4 & 1
\end{pmatrix} \hspace{50cm}$$
$$\text{快速} \hspace{90pt} \text{分贝} \hspace{90pt} \text{售后} \hspace{50cm}\\[2ex] B_{3}^{(3)} = \begin{pmatrix}
1 & 5 & 7 \\
1/5 & 1 & 3 \\
1/7 & 1/3 & 1
\end{pmatrix} \hspace{5pt}
B_{7}^{(3)} = \begin{pmatrix}
1 & 5 & 8 \\
1/5 & 1 & 4 \\
1/8 & 1/4 & 1 \end{pmatrix}\hspace{5pt}
B_{11}^{(3)} = \begin{pmatrix}
1 & 3 & 9 \\
1/3 & 1 & 5 \\
1/9 & 1/5 & 1
\end{pmatrix} \hspace{50cm}$$
$$\text{制热} \hspace{90pt} \text{清洗} \hspace{50cm} \\[2ex] B_{4}^{(3)} = \begin{pmatrix}
1 & 1/5 & 4 \\
5 & 1 & 8 \\
1/4 & 1/8 & 1
\end{pmatrix} \hspace{5pt}
B_{8}^{(3)} = \begin{pmatrix}
1 & 4 & 1/5 \\
1/4 & 1 & 1/8 \\
5 & 8 & 1
\end{pmatrix}\hspace{50cm}$$