LaTeX|1-零零碎碎
向量篇 | 矩阵篇 | 行列式篇 :⚓︎
约 734 个字 156 行代码 预计阅读时间 4 分钟 总阅读量 次
事实上已经有非常多人做过这个了,这里记录一些我反复查阅过的内容。
Some excellent links: - LaTeX-Math速查手册 by Emory Huang
\(\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4\end{pmatrix}\)
\[
\begin{pmatrix}
 a_{11} & \cdots & a_{1n} \\ 
  \vdots & \ddots & \vdots \\ 
  a_{n1} & \cdots & a_{nn}  
\end{pmatrix}
\]
\[
\begin{vmatrix}
 a_{11} & \cdots & a_{1n} \\ 
  \vdots & \ddots & \vdots \\ 
  a_{n1} & \cdots & a_{nn}  
\end{vmatrix}
\]
\[
\begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\ 
  \vdots & \ddots & \vdots \\ 
  a_{n1} & \cdots & a_{nn}  
\end{bmatrix}
\]
集合操作与基础符号⚓︎
| 拼写 | 展示 | 拼写 | 展示 | 拼写 | 展示 | 拼写 | 展示 | 
|---|---|---|---|---|---|---|---|
\geq | 
\(\geq\) | \leq | 
\(\leq\) | \neq | 
\(\neq\) | \forall | 
\(\forall\) | 
\cup | 
\(\cup\) | \cap | 
\(\cap\) | \land | 
\(\land\) | \lor | 
\(\lor\) | 
\neg | 
\(\neg\) | A \setminus B | 
\(A \setminus B\) | \emptyset | 
\(\emptyset\) | \subset | 
\(\subset\) | 
\mid | 
\(\mid\) | A \subsetneq B | 
\(A \subsetneq B\) | \exist | 
\(\exist\) | \And | 
\(\And\) | 
\because | 
\(\because\) | \therefore | 
\(\therefore\) | \bar{t} | 
\(\bar{t}\) | \bot | 
\(\bot\) | 
希腊字母⚓︎
| 拼写 | 展示 | 拼写 | 展示 | 拼写 | 展示 | 拼写 | 展示 | 
|---|---|---|---|---|---|---|---|
\alpha | 
\(\alpha\) | \rho | 
\(\rho\) | \iota | 
\(\iota\) | \Delta | 
\(\Delta\) | 
\beta | 
\(\beta\) | \sigma | 
\(\sigma\) | \kappa | 
\(\kappa\) | \Theta | 
\(\Theta\) | 
\gamma | 
\(\gamma\) | \varsigma | 
\(\varsigma\) | \lambda | 
\(\lambda\) | \Lambda | 
\(\Lambda\) | 
\delta | 
\(\delta\) | \tau | 
\(\tau\) | \mu | 
\(\mu\) | \Xi | 
\(\Xi\) | 
\epsilon | 
\(\epsilon\) | \upsilon | 
\(\upsilon\) | \mu | 
\(\mu\) | \Sigma | 
\(\Sigma\) | 
\zeta | 
\(\zeta\) | \chi | 
\(\chi\) | \nu | 
\(\nu\) | \Upsilon | 
\(\Upsilon\) | 
\eta | 
\(\eta\) | \psi | 
\(\psi\) | \xi | 
\(\xi\) | \Phi | 
\(\Phi\) | 
\theta | 
\(\theta\) | \omega | 
\(\omega\) | \pi | 
\(\pi\) | \Psi | 
\(\Psi\) | 
\vartheta | 
\(\vartheta\) | \Gamma | 
\(\Gamma\) | \Omega | 
\(\Omega\) | \varOmega | 
\(\varOmega\) | 
\varPsi | 
\(\varPsi\) | \varPhi | 
\(\varPhi\) | \Pi | 
\(\Pi\) | \varepsilon | 
\(\varepsilon\) | 
奇异字母与英文字体⚓︎
\mathbb{ }⚓︎
- Black Board Bold 一般用于表示数学和物理学中的向量或集合的符号
 
\(\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathbb{abcdefghijklmnopqrstuvwxyz}\) \(\mathbb{1234}\)
\mathbf{ }⚓︎
- 正粗体
 
\(\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathbf{abcdefghijklmnopqrstuvwxyz}\) \(\mathbf{0123456789}\)
\mathit{ }⚓︎
- 斜体数字
 
\(\mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathit{abcdefghijklmnopqrstuvwxyz}\) \(\mathit{0123456789}\)
\mathcal{ }⚓︎
- 书法字体(仅限大写),用于方案识别,密码学概念;
 
\mathscr{ }⚓︎
- 花体字,常用大写。
 
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
$\mathscr{abcdefghijklmnopqrstuvwxyz}$
$\mathscr{ 1234567890}$
\(\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathscr{abcdefghijklmnopqrstuvwxyz}\) \(\mathscr{ 1234567890}\)
\mathfrak{ }⚓︎
- 哥特式字体
 
\(\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)
\(\mathfrak{1234567890}\)
\(\mathfrak{abcdefghijklmnopqrstuvwxyz}\)
$\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
$\mathfrak{1234567890}$
$\mathfrak{abcdefghijklmnopqrstuvwxyz}$
\mathtt{ }⚓︎
- 等宽字体
 
\(\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathtt{abcdefghijklmnopqrstuvwxyz}\) \(\mathtt{ 1234567890}\)
杂七杂八⚓︎
\[\mathop{\arg\min}\limits_{\theta} \hspace{8pt} \mathop{\min}\limits_{\theta}\]
\[s.t \hspace{4pt} \left\{ \begin{aligned} \sum \limits^{n}_{j=1} x_{ij} \leq a_i , i = 1,2,..,m \\ \sum \limits^{n}_{i=1} x_{ij} = b_j , j = 1,2,..,n     \end{aligned}  \right. \]
\[\sim  \hspace{10pt}  \tilde{A}  \hspace{10pt} \forall\]
\[\Re \hspace{4pt} \real \hspace{4pt}  \reals \hspace{4pt}  \Reals \hspace{4pt}  \Z\]
$$\text{价格}  \hspace{90pt} \text{容积} \hspace{90pt}  \text{美观} \hspace{50cm} \\[2ex]  B_{1}^{(3)} = \begin{pmatrix}
     1 & 1/5 & 1/8 \\ 
      5 & 1 & 1/4 \\ 
    8 & 4 & 1
    \end{pmatrix} \hspace{5pt} 
 B_{5}^{(3)} = \begin{pmatrix}
     1 & 6 & 4 \\ 
      1/6 & 1 & 1/3 \\ 
    1/4 & 3 & 1
    \end{pmatrix} \hspace{5pt} 
    B_{9}^{(3)} = \begin{pmatrix}
     1 & 1/7 & 3 \\ 
      7 & 1 & 9 \\ 
    1/3 & 1/9 & 1
    \end{pmatrix} \hspace{20cm}$$
$$\text{冷冻}  \hspace{90pt} \text{功率} \hspace{90pt} \text{体积} \hspace{50cm}\\[2ex] B_{2}^{(3)} = \begin{pmatrix}
     1 & 2 & 9 \\ 
      1/2 & 1 & 7 \\ 
    1/9 & 1/7 & 1
    \end{pmatrix} \hspace{5pt} 
B_{6}^{(3)} = \begin{pmatrix}
     1 & 1/8 & 1/4 \\ 
      8 & 1 & 5 \\ 
    4 & 1/5 & 1
    \end{pmatrix}\hspace{5pt} 
B_{10}^{(3)} = \begin{pmatrix}
     1 & 1/7 & 1/2 \\ 
      7 & 1 & 4 \\ 
    2 & 1/4 & 1
    \end{pmatrix} \hspace{50cm}$$
$$\text{快速}  \hspace{90pt} \text{分贝} \hspace{90pt} \text{售后} \hspace{50cm}\\[2ex]  B_{3}^{(3)} = \begin{pmatrix} 
 1 & 5 & 7 \\ 
 1/5 & 1 & 3 \\
 1/7 & 1/3 & 1 
 \end{pmatrix} \hspace{5pt}
B_{7}^{(3)} = \begin{pmatrix} 
  1 & 5 & 8 \\ 
  1/5 & 1 & 4 \\ 
  1/8 & 1/4 & 1 \end{pmatrix}\hspace{5pt}
B_{11}^{(3)} = \begin{pmatrix}
1 & 3 & 9 \\
 1/3 & 1 & 5 \\ 
1/9 & 1/5 & 1
\end{pmatrix} \hspace{50cm}$$
$$\text{制热} \hspace{90pt}  \text{清洗} \hspace{50cm}  \\[2ex]  B_{4}^{(3)} = \begin{pmatrix}
     1 & 1/5 & 4 \\ 
      5 & 1 & 8 \\ 
    1/4 & 1/8 & 1
    \end{pmatrix} \hspace{5pt} 
B_{8}^{(3)} = \begin{pmatrix}
     1 & 4 & 1/5 \\ 
      1/4 & 1 & 1/8 \\ 
    5 & 8 & 1
    \end{pmatrix}\hspace{50cm}$$