LaTeX|1-零零碎碎
约 734 个字 156 行代码 预计阅读时间 4 分钟
向量篇 | 矩阵篇 | 行列式篇 :⚓︎
事实上已经有非常多人做过这个了,这里记录一些我反复查阅过的内容。
Some excellent links: - LaTeX-Math速查手册 by Emory Huang
\(\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4\end{pmatrix}\)
\[ \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \]
\[ \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} \]
\[ \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \]
集合操作与基础符号⚓︎
拼写 | 展示 | 拼写 | 展示 | 拼写 | 展示 | 拼写 | 展示 |
---|---|---|---|---|---|---|---|
\geq |
\(\geq\) | \leq |
\(\leq\) | \neq |
\(\neq\) | \forall |
\(\forall\) |
\cup |
\(\cup\) | \cap |
\(\cap\) | \land |
\(\land\) | \lor |
\(\lor\) |
\neg |
\(\neg\) | A \setminus B |
\(A \setminus B\) | \emptyset |
\(\emptyset\) | \subset |
\(\subset\) |
\mid |
\(\mid\) | A \subsetneq B |
\(A \subsetneq B\) | \exist |
\(\exist\) | \And |
\(\And\) |
\because |
\(\because\) | \therefore |
\(\therefore\) | \bar{t} |
\(\bar{t}\) | \bot |
\(\bot\) |
希腊字母⚓︎
拼写 | 展示 | 拼写 | 展示 | 拼写 | 展示 | 拼写 | 展示 |
---|---|---|---|---|---|---|---|
\alpha |
\(\alpha\) | \rho |
\(\rho\) | \iota |
\(\iota\) | \Delta |
\(\Delta\) |
\beta |
\(\beta\) | \sigma |
\(\sigma\) | \kappa |
\(\kappa\) | \Theta |
\(\Theta\) |
\gamma |
\(\gamma\) | \varsigma |
\(\varsigma\) | \lambda |
\(\lambda\) | \Lambda |
\(\Lambda\) |
\delta |
\(\delta\) | \tau |
\(\tau\) | \mu |
\(\mu\) | \Xi |
\(\Xi\) |
\epsilon |
\(\epsilon\) | \upsilon |
\(\upsilon\) | \mu |
\(\mu\) | \Sigma |
\(\Sigma\) |
\zeta |
\(\zeta\) | \chi |
\(\chi\) | \nu |
\(\nu\) | \Upsilon |
\(\Upsilon\) |
\eta |
\(\eta\) | \psi |
\(\psi\) | \xi |
\(\xi\) | \Phi |
\(\Phi\) |
\theta |
\(\theta\) | \omega |
\(\omega\) | \pi |
\(\pi\) | \Psi |
\(\Psi\) |
\vartheta |
\(\vartheta\) | \Gamma |
\(\Gamma\) | \Omega |
\(\Omega\) | \varOmega |
\(\varOmega\) |
\varPsi |
\(\varPsi\) | \varPhi |
\(\varPhi\) | \Pi |
\(\Pi\) | \varepsilon |
\(\varepsilon\) |
奇异字母与英文字体⚓︎
\mathbb{ }⚓︎
- Black Board Bold 一般用于表示数学和物理学中的向量或集合的符号
\(\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathbb{abcdefghijklmnopqrstuvwxyz}\) \(\mathbb{1234}\)
\mathbf{ }⚓︎
- 正粗体
\(\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathbf{abcdefghijklmnopqrstuvwxyz}\) \(\mathbf{0123456789}\)
\mathit{ }⚓︎
- 斜体数字
\(\mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathit{abcdefghijklmnopqrstuvwxyz}\) \(\mathit{0123456789}\)
\mathcal{ }⚓︎
- 书法字体(仅限大写),用于方案识别,密码学概念;
\mathscr{ }⚓︎
- 花体字,常用大写。
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
$\mathscr{abcdefghijklmnopqrstuvwxyz}$
$\mathscr{ 1234567890}$
\(\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathscr{abcdefghijklmnopqrstuvwxyz}\) \(\mathscr{ 1234567890}\)
\mathfrak{ }⚓︎
- 哥特式字体
\(\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)
\(\mathfrak{1234567890}\)
\(\mathfrak{abcdefghijklmnopqrstuvwxyz}\)
$\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
$\mathfrak{1234567890}$
$\mathfrak{abcdefghijklmnopqrstuvwxyz}$
\mathtt{ }⚓︎
- 等宽字体
\(\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\) \(\mathtt{abcdefghijklmnopqrstuvwxyz}\) \(\mathtt{ 1234567890}\)
杂七杂八⚓︎
\[\mathop{\arg\min}\limits_{\theta} \hspace{8pt} \mathop{\min}\limits_{\theta}\]
\[s.t \hspace{4pt} \left\{ \begin{aligned} \sum \limits^{n}_{j=1} x_{ij} \leq a_i , i = 1,2,..,m \\ \sum \limits^{n}_{i=1} x_{ij} = b_j , j = 1,2,..,n \end{aligned} \right. \]
\[\sim \hspace{10pt} \tilde{A} \hspace{10pt} \forall\]
\[\Re \hspace{4pt} \real \hspace{4pt} \reals \hspace{4pt} \Reals \hspace{4pt} \Z\]
$$\text{价格} \hspace{90pt} \text{容积} \hspace{90pt} \text{美观} \hspace{50cm} \\[2ex] B_{1}^{(3)} = \begin{pmatrix}
1 & 1/5 & 1/8 \\
5 & 1 & 1/4 \\
8 & 4 & 1
\end{pmatrix} \hspace{5pt}
B_{5}^{(3)} = \begin{pmatrix}
1 & 6 & 4 \\
1/6 & 1 & 1/3 \\
1/4 & 3 & 1
\end{pmatrix} \hspace{5pt}
B_{9}^{(3)} = \begin{pmatrix}
1 & 1/7 & 3 \\
7 & 1 & 9 \\
1/3 & 1/9 & 1
\end{pmatrix} \hspace{20cm}$$
$$\text{冷冻} \hspace{90pt} \text{功率} \hspace{90pt} \text{体积} \hspace{50cm}\\[2ex] B_{2}^{(3)} = \begin{pmatrix}
1 & 2 & 9 \\
1/2 & 1 & 7 \\
1/9 & 1/7 & 1
\end{pmatrix} \hspace{5pt}
B_{6}^{(3)} = \begin{pmatrix}
1 & 1/8 & 1/4 \\
8 & 1 & 5 \\
4 & 1/5 & 1
\end{pmatrix}\hspace{5pt}
B_{10}^{(3)} = \begin{pmatrix}
1 & 1/7 & 1/2 \\
7 & 1 & 4 \\
2 & 1/4 & 1
\end{pmatrix} \hspace{50cm}$$
$$\text{快速} \hspace{90pt} \text{分贝} \hspace{90pt} \text{售后} \hspace{50cm}\\[2ex] B_{3}^{(3)} = \begin{pmatrix}
1 & 5 & 7 \\
1/5 & 1 & 3 \\
1/7 & 1/3 & 1
\end{pmatrix} \hspace{5pt}
B_{7}^{(3)} = \begin{pmatrix}
1 & 5 & 8 \\
1/5 & 1 & 4 \\
1/8 & 1/4 & 1 \end{pmatrix}\hspace{5pt}
B_{11}^{(3)} = \begin{pmatrix}
1 & 3 & 9 \\
1/3 & 1 & 5 \\
1/9 & 1/5 & 1
\end{pmatrix} \hspace{50cm}$$
$$\text{制热} \hspace{90pt} \text{清洗} \hspace{50cm} \\[2ex] B_{4}^{(3)} = \begin{pmatrix}
1 & 1/5 & 4 \\
5 & 1 & 8 \\
1/4 & 1/8 & 1
\end{pmatrix} \hspace{5pt}
B_{8}^{(3)} = \begin{pmatrix}
1 & 4 & 1/5 \\
1/4 & 1 & 1/8 \\
5 & 8 & 1
\end{pmatrix}\hspace{50cm}$$